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Automatic Segmentation of Retinal Layer in OCT
Images With Choroidal Neovascularization

Dehui Xiang , Haihong Tian, Xiaoling Yang, Fei Shi , Weifang Zhu, Haoyu Chen, and Xinjian Chen

Abstract— Age-related macular degeneration is one of the
main causes of blindness. However, the internal structures of
retinas are complex and difficult to be recognized due to the
occurrence of neovascularization. Traditional surface detection
methods may fail in the layer segmentation. In this paper,
a supervised method is reported for simultaneously segmenting
layers and neovascularization. Three spatial features, seven gray-
level-based features, and 14 layer-like features are extracted for
the neural network classifier. The coarse surfaces of different
optical coherence tomography (OCT) images can thus be found.
To describe and enhance retinal layers with different thicknesses
and abnormalities, multi-scale bright and dark layer detection
filters are introduced. A constrained graph search algorithm is
also proposed to accurately detect retinal surfaces. The weights
of nodes in the graph are computed based on these layer-like
responses. The proposed method was evaluated on 42 spectral-
domain OCT images with age-related macular degeneration. The
experimental results show that the proposed method outperforms
state-of-the-art methods.

Index Terms— Choroidal neovascularization, optical coherence
tomography, neural network and graph search.

I. INTRODUCTION

AGE-RELATED macular degeneration (AMD) is one of
the most leading causes of blindness particularly in

people older than 60 years and leads to about 8% of all
blindness worldwide [1]. Choroidal neovascularization is a
typical feature of late-stage AMD and is mainly identified
by the growth of abnormal blood vessels from the choroid
through retinal pigment epithelium (RPE)/Bruch’s complex
with possible extension into the subretina [2]. There have been
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Fig. 1. An OCT image with neovascularization and manual annotations.

significant advances in the effective treatment of exuda-
tive or wet AMD with the introduction of anti-angiogenesis
therapy, and these treatments can prevent blindness and even
restore vision; however, they are expensive and therapeutic
effect varies from different patients [1]. Thus, it is important
to investigate and evaluate the treatment effects of anti-
angiogenesis therapy for each patient and provide appropriate
and adequate health care.

Optical coherence tomography (OCT) is a noninvasive and
non-contact imaging modality for morphological analysis and
diagnosis of retinal abnormality, such as AMD and glau-
coma. The OCT images are often used to diagnose and
monitor retinal diseases more accurately based on abnormality
quantification and retinal layer thickness computation both in
research centers and clinic routines [2]–[5]. Fig. 1 shows a
macular centered OCT B-scan image with neovascularization.
The vitreous, retina, neovascularization, fluid and choroid
were annotated with arrows. The retinal structures are nerve
fiber layer (NFL), ganglion cell layer (GCL), inner plexi-
form layer (IPL), inner nuclear layer (INL), outer plexiform
layer (OPL), outer nuclear layer (ONL), external limiting
membrane (ELM), myoid zone, ellipsoid zone, outer photore-
ceptor segment layer (OPSL), interdigitation zone, retinal pig-
ment epithelium (RPE)/Bruch’s complex, neovascularization,
fluid and choroid. Surfaces are annotated and numbered 1 to 8
from top to bottom in this figure.

To quantify the thickness of retinal layers and volume
of neovascularization, it is important to develop a reliable
and automatic segmentation method for both retinal layers
and neovascularization since manual segmentation is time-
consuming for huge amount of OCT images in clinic appli-
cations. However, there are several challenges. First, internal
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structures of retinas are complex and difficult to be recognized
as shown in Fig. 1. Second, there may be abnormalities such
as neovascularization and fluid. This leads to low contrast
and blurred boundaries in OCT images between retinal layers,
and also great structural changes of retinal layers. Layer
segmentation may fail in using traditional surface detection
methods such as traditional graph search algorithm [6], [7].

To overcome the problems presented above, we focus on
segmentation of retinas with exudative AMD in OCT images,
which is associated with neovascularization and possible fluid.
An automatic, supervised 3-D layer segmentation method
is proposed for macular-centered OCT images with exuda-
tive AMD. Shapes and intensities of retinal layers are learned
by a neural network (NN) classifier. Layer-like responses are
used to construct a graph for the graph search algorithm, which
is constrained with the recognized initial surfaces. Compared
to our previous work [7], it is much more difficult to detect
surfaces in OCT images with AMD due to the complexity
of neovascularization. The novelty of the proposed method
lies in:

1) Multi-scale bright and dark layer-like structure detection
filters are designed for estimation of possible bright and
dark retinal layers with different thickness.

2) Twenty four features are introduced to the NN classifier
aiming at finding the initial surfaces of retinal layers
affected by neovascularization.

3) The weights of nodes in the graph are computed based
on the original image and the layer structure detection
responses, and then a constrained graph search algorithm
is proposed to accurately detect surfaces between retinal
layers even though OCT images with neovascularization
are of low contrast and layer boundaries are blurred.

4) Layer segmentation and abnormal region segmentation
are simultaneously performed and the proposed method
achieves higher accuracy than previous graph search
algorithms [6], [7].

II. RELATED WORK

Many methods for retinal layer segmentation have been
reported. These can be divided into two groups: rule-based
methods and supervised methods. In the first group, the graph
search algorithm is often used. In the second group, supervised
methods are those based on voxel classification and then initial
surface refinement is followed.

Regarding rule-based methods, layer segmentation methods
attempt to obtain the initial surfaces of retinas and then detect
the final surfaces. Many methods have been proposed for
automatic retinal layer segmentation of OCT images of normal
eyes [8]–[16]. These methods are mostly based on the graph
search algorithm. The interfaces of vitreous-NFL and ellipsoid
zone-OPSL were first obtained and then were used to constrain
surface detection of the rest of interfaces. This is because
these boundaries of vitreous-NFL and ellipsoid zone-OPSL are
clear. Although authors claimed the method was based on the
trained models, only hard and soft constraints were obtained
for graph construction in [11] for normal eyes. In previous
work, we proposed a multi-resolution graph search method to
perform simultaneous layer segmentation and abnormal region

segmentation. This method was effective to OCT images with
serous pigment epithelial detachment since subretinal layers is
clearly visible [7]. Some other methods were also proposed.
Novosel et al. [17] developed a loosely-coupled level sets
method to simultaneously segment retinal layers coupling
through the order of layers and thickness priors and eight
interfaces were detected in the OCT images from normal eyes.
Then, they developed a locally-adaptive loosely-coupled level
sets method to simultaneously segment retinal layers and fluids
in OCT images with central serous retinopathy [18].

On the other hand, supervised methods are based on voxel
classification. Classifiers are trained by supervised learning
with manually labeled images. Vermeer et al. [19] used sup-
port vector machines with features based on image intensities
and gradients to detect five interfaces of retinas for both
normal and glaucomatous eyes. Lang et al. [20] introduced
a random forest classifier to segment eight retinal layers in
macular cube images. The features were mainly designed for
normal eyes for boundary classification with high contrast
between neighboring layers. Xu et al. [21] developed a voxel
classification based approach using a layer-dependent stratified
sampling strategy to segment intraretinal and subretinal fluid.
Hassan et al. [22] used a structure tensor approach combined
with a nonlinear diffusion process for the automated detection
of ELM and choroid in order to discriminate macular edema
and central serous retinopathy from OCT images using a
support vector machine classifier.

Recently, neural network classifiers were used for the seg-
mentation in retinal images. Marín et al. [23] computed a 7-D
vector composed of gray-level and moment invariants-based
features and used neural networks for blood vessel detection
in digital retinal images. Li et al. [24] used a deep neural
network to segment vessels in retinal images. van Grinsven
et al. [25] dynamically selected misclassified negative samples
during training to speed-up deep learning network training in
order to detect hemorrhages in color fundus images. How-
ever, these neural network classifiers were mainly used to
segment vessels in color fundus images. Fang et al. [26]
combined convolutional neural networks and a graph theory
dynamic programming method to segment nine layer bound-
aries on OCT images with non-exudative AMD but with-
out neovascularization and fluid. However, the features were
extracted from a 2D sliding window; therefore, this method
ignored the class labels’ spatial structure. Roy et al. [27]
used fully convolutional network to segment retinal layers and
fluid in 2D OCT images with diabetic macular edema but
without neovascularization. However, consecutive convolution
layers are interleaved with spatial pooling operations, and can
result in low resolution features. Many small structures such
as thin layers may be lost, although subsequent upsampling
operators and convolutions can be used to learn more precise
output.

III. METHOD

In this paper, a novel supervised segmentation framework
is proposed to address the aforementioned challenges in the
segmentation module of the retinal neovascularization treat-
ment. As shown in Fig. 2, the proposed framework contains
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Fig. 2. The flowchart of the proposed framework. One typical OCT image
in Fig. 1 undergoes each step in the testing stage of the framework, and the
intermediate results are shown in Fig. 3 to Fig. 5.

two stages: training stage and testing stage. In the training
stage, OCT images are manually annotated and features are
extracted for the NN classifier training. In the testing stage,
the proposed segmentation framework is a coarse-to-fine seg-
mentation process that consists of three steps: preprocessing,
initialization and segmentation. Original OCT image is pre-
processed to reduce noise and gray levels are normalized. The
necessary feature vector is computed from preprocessed OCT
image and initial surfaces are computed with the application
of the trained NN classifier to label voxels as different retinal
layers. The final surfaces are refined via a layer constrained
graph searching algorithm and neovascularization is also seg-
mented.

A. Preprocessing

To reduce the effect of the eye movement, image
flattening is often employed to correct the irregular
displacements [7], [9]. Surface 1 is the top interface between
the vitreous and retina. In order to flatten a training or testing
OCT image, Surface 1 needs to be detected. In training stage,
the manually annotated image is scanned along A-line to find
the interface between vitreous and NFL as Surface 1. In testing
stage, initial Surface 1 is fast detected. First, noise smoothing
is performed slice by slice by convolving B-scan images of the
original 3D OCT image with a Gaussian kernel of dimensions
l × l = 9 × 9, mean μ = 0 and standard variance σ = 1.0.
Second, voxel intensities of the smoothed image are modified
according to the following gray-level global transformation
function:

IN (�x)=

⎧
⎪⎪⎨

⎪⎪⎩

IN,max; I f (�x) ≥ I f,s + I f,r ;
IN,max

I f,r

(
I f (�x)− I f,s

) ; I f,s < I f (�x) < I f,s + I f,r ;
0; I f (�x) ≤ I f,s .

(1)

where, �x denotes the voxel coordinates, IN (�x) is the nor-
malized intensity of a voxel, I f (�x) is the intensity of a
voxel in the smoothed image, I f,r is the normalized range,
the intensity interval is

[
I f,s , I f,s + I f,r

]
, IN,max is the max-

imal normalized intensity. In the experiments, I f,s is calcu-
lated by the minimal value I f,min (�x) and the maximal value
I f,max (�x) of the smoothed image, i.e., I f,s = I f,min (�x) +
τ f

(
I f,max (�x) − I f,min (�x)

)
, τ f is set to 0.25, and I f,s + I f,r is

set to the maximal value I f,max (�x). IN,max is set to 255. Canny
edge detection algorithm is used to obtain initial Surface 1.
The multi-resolution graph search algorithm [7] is used to
detect Surface 1 according to initial Surface 1. In training and
testing stage, voxels below Surface 1 in each A-line are top
aligned to flatten images.

B. Neural Network for Initial Surface Detection

Recently, supervised classification has been introduced
into normal layer recognition of ophthalmic OCT
images [19], [20]. Vermeer et al. [19] used the support
vector machine classifiers to classify pixels. Lang et al. [20]
used random forest classifier to segment eight retinal
layers. Those two methods mainly used A-line or B-scan
features to provide a probability of belonging to each layer;
however, these methods did not consider characteristics
of 3D retinal layers. In addition, due to the occurrence of the
neovascularization, the boundaries between two layers are
blurred and the OCT image is also of low contrast. Previous
methods may fail in detecting retinal layer boundaries in
the OCT images with retinal diseases. Therefore, we focus
on describing and learning 3D retinal layers so that it is
easier to find the initial layers in the OCT images with
neovascularization.

1) Feature Extraction: A proper feature vector needs to
be created for voxel characterization before the voxel is
labeled by a set of classifiers. In terms of some quantifiable
measurements, a voxel combined with its feature vector and
label is used to train the multi-layer neurons, and the training
algorithm iteratively adjusts the weights to enable the network
to give the desired label to the provided feature vector. The
voxel representation is also used in the classification stage to
decide which retinal layer the voxel belongs to. In this paper,
the following sets of features are selected in the training stage
and testing stage.

• Spatial Features: three features based on voxel’s coordi-
nates for describing the distance to reference surface and
its position in nasal/temporal side of the retina.

• Gray Level based Features: seven features based on non-
enhanced and enhanced intensities of the voxel due to
the difference of the intensity ranges between different
layers.

• Layer-like Features: fourteen features based on layer
shape responses for differentiating the darker layers and
the brighter layers with different thickness.

a) Spatial features: Voxel’s coordinates help to localize
the voxel in a candidate layer using a coordinate system that
is unified by a reference surface. However, fovea is often
deformed by neovascularization, and it is difficult to locate
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the center of the fovea by computing the thinnest position
between the retinal boundaries as in [20]. After Surface 1 is
detected, the depth (distance) to Surface 1 for each voxel in
the flattened image can be calculated as z coordinate. The
original x and y coordinates are also considered as features.
These three features represent the geometric information.

b) Gray level based features: Since the dark layers and
bright layers are always interleaved from top to bottom,
features based on intensities can describe the difference of
the intensity ranges between different layers. The image
denoised with the curvature anisotropic diffusion filtering is
considered as a feature. In the clinical images, the intensity
range varies from one patient to another and the contrast
between neighboring layers is often low due to the occur-
rence of neovascularization. To address these problems, the
filtered and smoothed image are normalized in several intervals
as Eq.(1).

c) Layer-like features: The layers in OCT images can be
approximated by plate structures. These plate-like structures
are not all equally thick and may be oriented at any angle.
A selective layer detection filter can reduce responses from
non-layer structures and enhance layer structures. Several
papers have introduced techniques for structure extraction
based on the eigen-decomposition of the Hessian computed
at each image pixel/voxel, and typically reported in the
application of vessel enhancement [28], [29]. Following this
procedure for a given voxel at �x = (x, y, z) of a smoothed
OCT image I f (�x), Hessian matrix H (�x, σt ) of the image in
scale space is computed for the estimation of the possibility of
a layer element in a 3D OCT image, where σt is variance of a
Gaussian function. For bright layer structures, λ3 (�x, σt ) < 0
has to be satisfied; while for dark layer structures,
λ3 (�x, σt ) > 0 has to be satisfied. The bright layer possibility
is estimated in the scale space as

L(�x, σt )=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|λ3(�x, σt )| ·
exp(−αλ2

1(�x, σt ) + βλ2
2(�x, σt )

λ2
3(�x, σt )

),
λ3(�x, σt ) < 0

0, λ3(�x, σt ) ≥ 0

(2)

The dark layer possibility is defined as

L(�x, σt )=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|λ3(�x, σt )| ·
exp(−αλ2

1(�x, σt ) + βλ2
2(�x, σt )

λ2
3(�x, σt )

), λ3(�x, σt ) > 0

0, λ3(�x, σt ) ≤ 0

(3)

where α and β are symmetric parameters, which control the
ratio between the two minor components λ1 (�x, σt ), λ2 (�x, σt )
to the principal component λ3 (�x, σt ).

To take into account the varying sizes of the layers,
the scale-dependent layer possibility function L (�x, σt ) is
computed for varying thickness in the 3D image domain. The
thickness values are discretized between the minimal scale
σt,min and the maximal scale σt,max , using a linear scale.
The multiscale layer response is obtained by selecting the

Fig. 3. Automatic initial surface detection. (a) Voxel classification via neural
network prediction; (b) The seven initial curves/surfaces with the filtered
image.

maximum response over the range of all scales as

Lm (�x, σt ) = max
σt,min≤σt≤σt,max

L (�x, σt ) (4)

2) Classification: Two classification stages can be distin-
guished: a training stage, in which the NN configuration is
chosen and the NN is trained, and a prediction stage, in which
the trained NN is used to classify each voxel which layer
belongs to.

a) Neural network training: The retinal layers in OCT
images with neovascularization are manually labeled as eight
classes. Class 1: NFL, Class 2: GCL, Class 3: IPL, Class 4:
INL, Class 5: OPL, Class 6: ONL + ELM + myoid zone,
Class 7: ellipsoid zone + OPSL + interdigitation zone +
RPE/Bruch’s complex + neovascularization + fluid, and Class
0: choroid. A multilayer feedforward network, consisting of an
input layer, two hidden layers and an output layer, is used in
this paper. The input layer consists of a number of neurons that
equals to the dimension of the feature vector (24 neurons). The
two hidden layers are both given 100 neurons. Since NN does
not support categorical variables explicitly due to the logistic
nonlinear sigmoidal activation function, an 8D binary vector
of eight components is used instead of the output class label
(one element for one class); therefore, the output layer contains
eight neurons. The back-propagation algorithm is used to train
the model.

b) Neural network prediction: At this stage, the trained
NN is applied to an unseen OCT image to generate a label
image. For each voxel under the surface vitreous-NFL, voxels’
feature descriptions are individually passed through the trained
NN. Due to the inability to handle categorical data, the trained
NN gives a vector of probabilities to the unseen voxel at the
prediction stage. The highest probability can be accepted as the
winning class label output by the network. Fig. 3(a) shows the
result of NN classification on one OCT image. As can be seen
in Fig. 3(a), most voxels are given correct labels except a few
voxels. The misclassification leads to inaccurate surface detec-
tion. To solve this problem, morphological opening and closing
operations are employed for each class. Initial Surface 2 is
first searched along A-line downwards. Initial Surface 3 is
then searched along A-line downwards started from initial
Surface 2. Initial Surfaces 4-7 are also detected as Surface 3.
Initial Surface 8 is finally searched along A-line upwards. The
initial curves/surfaces are smoothed by computing the average
z value in x and y directions, as shown in Fig. 3(b).
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C. Constrained Graph Search for Surface Detection

The graph search algorithm is used to refine positions of
the vertices in the initial surfaces. Compared to the previous
work by [7]–[9], [11], [15], and [30], a new cost function is
formulated based on layer structure detection, allowing detec-
tion of the optimal surfaces of retinal layers even though the
contrast between neighboring layers is low and morphological
changes of retinal layers are large due to neovascularization
and fluid.

As developed in the LOGISMOS framework by
[8] and [31], optimal surface detection can be transformed
into finding a minimum-cost closed set in a corresponding
vertex-weighted graph. Briefly, this involves two important
tasks. First, Surfaces 2-6 were detected by the constraints
of Surface 7 in previous work [7]–[9], [11], [15], [30];
however, due to neovascularization and fluid, the boundaries
of myoid zone and ellipsoid zone in OCT images are not
clear as those of normal layers and greatly deformed, leading
to Surfaces 2-7 not being accurately detected by complying
with previous procedures. Although shape and context priors
were learned in [11], only smoothness constraints were
obtained to constrain the neighboring nodes. That is why the
initial surfaces are found via the NN classification. Second,
the proper formulation of a cost function should be provided
since it measures the possibility that each node in the graph
belongs to a particular surface, and determines the optimal
surface with the lowest cost. Therefore, a proper initialization
of surfaces and an improved cost function help to detect
surfaces more accurately in OCT images with diseases than
previous methods.

A weighted and directed graph G [6], [7] is constructed
in a narrowband around each initial surface. Each node in G
corresponds to a voxel in the subvolume of images. Nodes in
graph G are connected with three types of weighted and
directed arcs: the intra-column arc E intra, the inter-column
arc E inter, and the terminal arc E terminal. The intra-column
arc E intra connects two neighboring nodes in a column. The
inter-column arc E inter connects two neighboring nodes in
two neighboring columns. The terminal arc E terminal connects
nodes in G to two terminal nodes S or T , if the weight is
positive then the node is connected to the terminal node S;
otherwise, the node is connected to the terminal node T . For
the (x, y)th column in a graph, a node can be denoted as
V (x, y, v) for the graph G (v = 1, 2, · · · , Nu +Nb +1). In the
application, Nu and Nb are set to the same number for all the
initial surfaces. The node in the neighboring

(
x ′, y ′)th column

can be denoted as V
(
x ′, y ′, v

)
. Mathematically, the three types

of arcs can be written as,

E intra = 〈V (x, y, v) , V (x, y, v − 1)〉 , v > 1, (5)

E inter = 〈
V (x, y, v) , V

(
x ′, y ′, v − u

)〉
, v > u, u > 0,

(6)

Eter min al =
{

〈S, V (x, y, v)〉 , ω (V (x, y, v)) > 0;
〈V (x, y, v) , T 〉 , ω (V (x, y, v)) ≤ 0; (7)

where u is the inter-column smoothness constraint for the
outer or inner surface. ω is the weight of a node V (x, y, v).

Fig. 4. Automatic surface detection. (a) The curvature anisotropic diffusion
filtered image and the detected surfaces( red curves) via the constrained
graph search algorithm; (b) The bright layer possibility image and the
detected surfaces(red curves) via the constrained graph search algorithm;
(c) The dark layer possibility image and the detected surfaces(red curves) via
the constrained graph search algorithm; (d) Final surfaces(red curves) via the
constrained graph search algorithm, manual annotated surfaces (blue curves)
and a B-scan image of the original OCT image.

For the first two types of arcs E intra and E inter, the cost is
set to infinity. The cost of terminal arcs can be defined as the
absolute value of the weight of the corresponding node. The
weight of a node for an initial surface is defined as

ω (V (x, y, v)) =

⎧
⎪⎨

⎪⎩

−B (V (x, y, v))

+B (V (x, y, v − 1)) , v > 1;
−B (V (x, y, v)) , v = 1;

(8)

where B (V (x, y, v)) is the edge-related cost function for each
node in the graph G. There are two types of edge-related cost
functions: dark-to-bright for Surfaces 1, 3, 5, 7 and bright-to-
dark for Surfaces 2, 4, 6, 8. The Sobel operator is used to
compute the gradient magnitude of the boundary cost image
in z-direction in order to assign the edge-related cost for each
node. The boundary cost image is defined according to the
filtered image and the layer enhanced images, including the
bright layer possibility image computed as Eq. (2) as shown
in Fig. 4(b) and the dark layer possibility image computed
as Eq. (3) as shown in Fig. 4(c). With the constraints of
layer structure possibilities, the boundary cost image integrates
three types of boundary cost associated with the three images:
the filtered image I f (x, y, v), the bright layer possibility
image Lb(x, y, v, σt ) and the dark layer possibility image
Ld(x, y, v, σt ). The total voxel cost of the boundary cost
image can be written as the weighted sum of the three images
as given below:

C (x, y, v) = � I f (x, y, v) + θ Lb(x, y, v, σt )

− ϑLd (x, y, v, σt ), (9)

where �, θ, ϑ are three weighted parameters. The three
images I f (x, y, v), Lb(x, y, v, σt ) and Ld (x, y, v, σt ) are
normalized to [0, 255] computed as Eq. (1) before the total
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Fig. 5. Automatic surface detection. (a) The yellow curves are Surface 7b
and Surface 8t, the blue curves are the bottom contours of Surface 7b and
Surface 8t; (b) The red curves are the segmented neovascularization and fluid
and the green curves are the manual annotated neovascularization and fluid;
(c) The red curve is the footprint of abnormal regions below Surface 7; (d) The
red curve is the footprint of abnormal regions below Surface 8t.

voxel cost C (x, y, v) is calculated. Since NN classifiers can
compute class probability for each layer, class probability from
adjacent layers can be also used to constrain the graph search
algorithm as Eq.(9). Since most surfaces in OCT images are
corrupted with speckles, the interfaces and the boundaries of
the retinal layers except that between vitreous and NFL are
blurred and of low contrast. Surface detection errors may
be produced without strong constraints of layer boundaries.
Therefore, the initial surfaces and the hybrid boundary cost
functions are proposed to detect surfaces of retinal layers
affected by neovascularization and fluid.

D. Neovascularization Segmentation

The layers under Surface 7 often locally are deformed
upwards around neovascularization. Fluid caused by neovascu-
larization often occurs. To detect neovascularization and fluid,
positions need to be estimated. This is done by computing the
height of the deformed surfaces and the occurrence of fluid.

Surface 7 changes abruptly and is deformed in the abnormal
region while its original pre-disease position used to be a
smooth surface. For each curve of Surface 7 in each B-scan,
the corresponding bottom contour is computed via the convex
hull algorithm [32]. The footprints of the deformed Surface 7
can be found by scanning each curve of Surface 7 and its
bottom contour in each B-scan. The pixel is considered in
the footprints of the abnormal region if the distance between
Surface 7 and its bottom contour is larger than a threshold
value (twenty-voxel height). Neovascularization and fluid are
then segmented constrained by the footprint of the abnormal
region.

Two auxiliary surfaces (Surface 7b and Surface 8t) are
also estimated between these two surfaces via the constrained
graph search algorithm as shown in Fig. 5(a). Surface 7b (the
top yellow curve in Fig. 5(a)) is detected according to the
bright-to-dark edge-related cost function, and then Surface 8t
(the bottom yellow curve in Fig. 5(a)) is detected between
Surface 7b and Surface 8 according to the dark-to-bright edge-
related cost function. Fluid is segmented via thresholding
constrained between Surface 7 and Surface 8. The voxel is

considered to be in neovascularization region via thresholding
between Surface 7 and Surface 8t. The voxels are excluded
between Surface 7 and Surface 8t if the height between
Surface 7 and Surface 8t is smaller than mean thickness of
the normal region. The voxel is also considered to be in
neovascularization region if the height between Surface 8t and
Surface 8 is larger than mean thickness in the normal region.
The bottom contour of Surface 8 is also computed via the
convex hull algorithm [32]. Neovascularization and fluid are
segmented via thresholding between Surface 8 and thee bottom
contour of Surface 8.

IV. EXPERIMENTAL EVALUATION

The OCT images were obtained from the Joint
Shantou International Eye Center by using a Cirrus HD-OCT
4000 machine. Macula-centered 42 SD-OCT scans with AMD
were acquired as testing images. Another 6 macula-centered
SD-OCT images with AMD were used as training images.
The OCT volume images contain 512 × 128 × 1024 voxels
with voxel size of 11.74 × 47.24 × 1.96 μm3.

To evaluate the layer segmentation results, retinal specialists
manually annotated the surfaces in the B-scan images to form
the segmentation reference. Due to the time consumption of
manual annotation, only 10 out of the 128 B-scans were
randomly chosen and annotated for each 3D OCT volume
in the testing data set. All the 128 B-scans were manually
annotated for each 3D OCT volume in the training data
set, and then each 3D OCT volume was labeled with the
eight classes according to the annotated surfaces for the NN
classifier training. To evaluate the neovascularization segmen-
tation results, neovascularization were also manually annotated
for each 3D OCT volume in the testing data set. All the
128 B-scan images were scanned slice by slice for manual
neovascularization segmentation. This study was approved by
the intuitional review board of Joint Shantou International Eye
Center and adhered to the tenets of the Declaration of Helsinki.

To evaluate performance of surface detection methods, aver-
age unsigned surface detection error (AUSDE) was computed
for each surface by measuring absolute Euclidean distance in
the z-axis between surface detection results of the algorithms
and the reference standard, average signed surface detection
error (ASSDE) was computed for each surface by measuring
distance in the z-axis between surface detection results of the
algorithms and the reference standard [7]. To evaluate perfor-
mance of neovascularization segmentation methods, we used
three measures: true positive fraction (TPF), false positive
fraction (FPF) and Dice similarity coefficient (DSC) [7].
To demonstrate the improvement of our method, the NN +
constrained graph search algorithm (NNCGS) was com-
pared with the state-of-art methods: the Iowa reference
algorithm (IR) [6], the multi-resolution graph search algo-
rithm (MGS) [7], the NN + multi-resolution graph search
algorithm (NNMGS), the support vector machine + con-
strained graph search algorithm (SVMCGS) and the random
forest + constrained graph search algorithm (RFCGS). Paired
t-tests were used to compare surface detection and fluid
segmentation errors and a p-value less than 0.05 was con-
sidered statistically significant.
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Fig. 6. Automatic surface detection (green curves are the segmentation
reference, red curves are detected surfaces) of an OCT image with neovas-
cularization. (a) Surfaces were detected via the IF algorithm; (b) Surfaces
were detected via the MGS algorithm; (c) The seven initial surfaces via the
SVM classification; (d) Surfaces were detected via the SVMCGS algorithm;
(e) The seven initial surfaces via the RF classification; (f) Surfaces were
detected via the RFCGS algorithm; (g) The seven initial surfaces via the
NN classification; (h) Surfaces were detected via the NNMGS algorithm;
(i) Surfaces were detected via the NNCGS algorithm with the flattened and
filtered image; (j) Surfaces were detected via the NNCGS algorithm with
the flattened bright layer response image (σt,min = 1.0, σt,max = 4.0);
(k) Surfaces were detected via the NNCGS algorithm with the flattened dark
layer response image (σt,min = 1.0, σt,max = 4.0); (l) Final surfaces were
detected via the NNCGS algorithm.

V. EXPERIMENTAL RESULTS

A. Surface Detection Results

An OCT volume image is only with neovascularization as
shown in Fig. 6. Another OCT image is with neovasculariza-
tion and fluid as shown in Fig. 7. The green curves are manual
annotated surfaces. The red curves are the detected surfaces
via the surface detection algorithms. The yellow curves are
the seven initial surfaces by using classifiers. Table I shows
the mean and standard deviation of unsigned surface detection

Fig. 7. Automatic surface detection (green curves are the segmentation
reference, red curves are detected surfaces) of an OCT image with neo-
vascularization and fluid. (a) Surfaces were detected via the IF algorithm;
(b) Surfaces were detected via the MGS algorithm; (c) The seven initial sur-
faces via the SVM classification; (d) Surfaces were detected via the SVMCGS
algorithm; (e) The seven initial surfaces via the RF classification; (f) Surfaces
were detected via the RFCGS algorithm; (g) The seven initial surfaces via
the NN classification; (h) Surfaces were detected via the NNMGS algorithm;
(i) Surfaces were detected via the NNCGS algorithm with the flattened and
filtered image; (j) Surfaces were detected via the NNCGS algorithm with
the flattened bright layer response image (σt,min = 1.0, σt,max = 4.0);
(k) Surfaces were detected via the NNCGS algorithm with the flattened dark
layer response image (σt,min = 1.0, σt,max = 4.0); (l) Final surfaces were
detected via the NNCGS algorithm.

error. The p-values of AUSDE are shown in Table II. Table III
shows the mean and standard deviation of signed surface
detection error. The p-values of ASSDE for each surface are
shown in Table IV.

For the IR algorithm [6], AUSDEs of Surface 1-8 were
obviously large as shown in the first column of Table I, and
surface detection errors were the largest at Surface 8 while
detection errors of the rest surfaces were slightly smaller.
These surface detection errors were consistent with surface
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TABLE I

COMPARISON OF SURFACE DETECTION WITH AVERAGE UNSIGNED SURFACE DETECTION ERROR (MEAN±SD μm §)

TABLE II

P-VALUES OF AVERAGE UNSIGNED SURFACE DETECTION ERROR

TABLE III

COMPARISON OF SURFACE DETECTION WITH AVERAGE SIGNED SURFACE DETECTION ERROR (MEAN±SD μm §)

TABLE IV

P-VALUES OF AVERAGE SIGNED SURFACE DETECTION ERROR

detection results shown in Fig. 6(b) and Fig. 7(b). Surface
detection error occurred at Surface 7 and Surface 8 where the
large neovascularization made layers to be deformed upwards.

For the MGS algorithm [7], AUSDEs of Surfaces 7, 8 were
slightly smaller than those of the IR algorithm while AUSDEs
of Surfaces 2-6 were larger than those of the IR algorithm
as shown in the second column of Table I. As shown
in Fig. 6(c) and Fig. 7(c), surface detection error occurred from
Surfaces 2-8 also due to the appearance of the neovascu-
larization. The surface detection via the MGS algorithm for
OCT images with neovascularization first segmented Surface
7 and then Surfaces 2-6 were refined with Surface 7; therefore,
Surfaces 2-6 tended to be detected incorrectly as Surface 7 and
the mean surface detection errors of Surfaces 5-7 were large
as shown in Fig. 6(c) and Fig. 7(c).

The results in the third column of Table I show AUSDEs
of Surfaces 1-8 except Surface 4 were smaller than those of

the IR algorithm. Compared to the MGS algorithm, AUSDEs
of Surfaces 1-7 were smaller while AUSDE of Surface 8 was
slightly larger via the NNMGS algorithm. Due to initializa-
tion via NN classification, most surfaces were detected more
accurately than the method without initialization. The reason
of inaccurate detection of Surface 8 is that Surface 8 was
detected in a subvolume via the NNMGS algorithm while the
Surface 8 was detected in the whole volume.

The results of SVMCGS were shown in the 4th column of
Table I. AUSDEs of Surfaces 1, 2, 8 were smaller than those of
the IR algorithm. AUSDEs of Surfaces 1, 2 were smaller than
those of the MGS algorithm. AUSDE of Surface 8 was smaller
than those of the NNMGS algorithm. AUSDEs of Surfaces 3-7
were the largest, compared to the rest of the algorithms. The
results of RFCGS were shown in the 5th column of Table I.
AUSDEs of all surfaces were smaller than those of the IR
algorithm. AUSDEs of Surfaces 3-7 were smaller than those
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Fig. 8. Automatic neovascularization segmentation (green curves are the
segmentation reference, red curves are segmented neovascularization) of an
OCT image with neovascularization. (a) Neovascularization was segmented
via the IF algorithm; (b) Neovascularization was segmented via the MGS
algorithm; (c) Neovascularization was segmented via the SVMCGS algorithm;
(d) Neovascularization was segmented via the RFCGS algorithm; (e) Neovas-
cularization was segmented via the NNMGS algorithm; (f) Auxiliary surfaces
for neovascularization segmentation via the NNCGS algorithm (yellow curves
are Surface 7b and Surface 8t, blue curves are the bottom contours of Surface 7
and Surface 8t, red curves are segmented surfaces); (g) Neovascularization
was segmented via the NNCGS algorithm; (h) 3D visualization of neovascu-
larization segmented via the NNCGS algorithm (red) and manual annotation
(green).

of the MGS algorithm. AUSDEs of Surfaces 2-8 were smaller
than those of the SVMCGS algorithm.

Table I shows the proposed method has a great improve-
ment over the IR algorithm and the MGS algorithm even a
large proportion of the layers exhibits dramatic morphological
changes. As can be seen in Table II, AUSDEs of Surfaces 1-8
of the NNCGS algorithm were significantly smaller than those
of the IR algorithm. AUSDEs of Surfaces 1-7 of the NNCGS
algorithm were significantly smaller than those of the MGS
algorithm. AUSDEs of Surface 8 was not significantly differ-
ent between the MGS algorithm and the NNCGS algorithm.
As can be seen in Fig. 6(b)(c) and Fig. 7(b)(c), Surfaces 2-7
were detected via the IR algorithm and the MGS algorithm
lower than reference surfaces. As can be seen in the first
and second columns of Table III, ASSDEs of Surfaces 2-7
were mostly positive. It means the mean position of the
detected Surfaces 2-7 via the IR algorithm and the MGS
algorithm were lower than that of the segmentation reference.
This is due to low intensity of the layers above the abnormal
region and large morphological changes of the layers.

Compared to the SVMCGS algorithm, AUSDEs of
Surfaces 2-8 were significantly reduced via the NNCGS

algorithm as shown in Table I and Table II (p < 0.05).
The absolute ASSDEs of Surfaces 2-8 were also significantly
reduced as shown in Table III and Table II ( p < 0.05). As can
be seen in the 4th column of Table III, ASSDEs of Surfaces 1-7
were negative. It means the average positions of the detected
Surfaces 1-7 via the SVMCGS algorithm were higher than
that of the segmentation reference, which is consistent with
Fig. 6(e) and Fig. 7(e). Compared to the RFCGS algorithm,
AUSDEs of Surfaces 2-7 via the NNCGS algorithm were
smaller and significantly different as shown in Table I and
Table II (p < 0.05). AUSDE of Surface 8 was statisti-
cally indistinguishable between the RFCGS algorithm and the
NNCGS algorithm as shown in Table II ( p ≥ 0.05). Compared
to the RFCGS algorithm, ASSDEs of Surfaces 2, 3, 5, 6, 7 via
the NNCGS algorithm were smaller and significantly different
as shown in Table III and Table IV ( p < 0.05). As can be
seen in the 5th column of Table III, ASSDEs of Surface 1-7
were negative. It means the average positions of the detected
Surfaces 1-7 via the RFCGS algorithm were higher than
that of the segmentation reference, which is consistent with
Fig. 6(g) and Fig. 7(g). AUSDEs of Surfaces 4, 8 were
statistically indistinguishable between the RFCGS algorithm
and the NNCGS algorithm as shown in Table IV (p ≥ 0.05).

Compared to the NNMGS algorithm, AUSDEs of
Surfaces 1-8 were also reduced via the NNCGS algorithm
as shown in the fourth column of Table I. As can be seen
in the third column of Table III, ASSDEs of Surfaces 4-8
were positive. It means the average position of the detected
Surfaces 4-8 via the NNMGS algorithm were lower than that
of the segmentation reference. For Surface 7, the occurrence
of neovascularization lead to large morphological changes of
the layers as shown in Fig. 1, Fig. 6 and Fig. 7. As can be
seen in Fig. 6(d) and Fig. 7(d), the detected Surface 7 dropped
under the segmentation reference. However, the ellipsoid zone
was higher enhanced via the bright layer detection filter while
it was much weak for the bright layer responses of the ELM
layer as shown in Fig. 6(g) and Fig. 7(g) with a large scale.
Compared to the NNMGS algorithm, the NNCGS algorithm
improved the detection of Surface 7 as shown in Fig. 6(i) and
Fig. 7(i). As can be seen in Table II, AUSDEs of Surfaces 3-8
of the NNCGS algorithm were significantly smaller than
those of the NNMGS algorithm ( p < 0.05). AUSDE of
Surface 2 was not significantly different between the NNMGS
algorithm and NNCGS algorithm.

B. Neovascularization Segmentation Results

An example of neovascularization segmentation result of an
OCT image only with neovascularization is shown in Fig. 8
and also another example with neovascularization and fluid
is shown in Fig. 9. The green curves are manually annotated
neovascularization and fluid. The red curves are the segmented
neovascularization via the neovascularization segmentation
algorithms. Table V shows the mean and standard deviation
of TPF, FPF and DSC. The p-values of the three evalua-
tion measures of neovascularization segmentation are shown
in Table VI. The fluid segmentation was not evaluated since
many OCT images were not with fluid.
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Fig. 9. Automatic neovascularization and fluid segmentation (green curves
are the segmentation reference, red curves are segmented neovascularization,
blue curves are segmented fluid) of an OCT image with neovascularization and
fluid. (a) Neovascularization and fluid were segmented via the IF algorithm;
(b) Neovascularization and fluid were segmented via the MGS algorithm;
(c) Neovascularization and fluid were segmented via the SVMCGS
algorithm; (d) Neovascularization and fluid were segmented via the RFCGS
algorithm; (e) Neovascularization was segmented via the NNMGS algorithm;
(f) Auxiliary surfaces for neovascularization segmentation via the NNCGS
algorithm (yellow curves are Surface 7b and Surface 8t, blue curves are
the bottom contours of Surface 7 and Surface 8t, red curves are segmented
surfaces); (g) Neovascularization and fluid were segmented via the NNCGS
algorithm; (h) 3D visualization of neovascularization segmented via the
NNCGS algorithm (red) and manual annotation (green); (i) 3D visualization
of fluid segmented via the NNCGS algorithm (blue) and manual annotation
(green).

For the IR algorithm [6] and the MGS algorithm [7],
the same method was employed to segment neovascularization
on the same dataset. The neovascularization was segmented
between Surface 7 and Surface 8 detected. Because of the inac-
curate surface detection, small region of neovascularization
was obtained as shown in Fig. 8(a) and Fig. 9(a). This led
to much lower values of TPF, FPF and DSC as shown in
the first row of Table V. The IR algorithm [6] and the
MGS algorithm [7] were not robust to deformation of retinal
layers, and thus a little improvement was achieved as shown
in the second row of Table V. For the NNMGS, SVMCGS
and RFCGS algorithms, the same method was also used
to segment neovascularization on the same dataset between
Surface 7 and Surface 8. This is also because the NNMGS

TABLE V

COMPARISON OF NEOVASCULARIZATION
SEGMENTATION (MEAN±SD %)

TABLE VI

P-VALUES OF NEOVASCULARIZATION SEGMENTATION

algorithm produced large surface detection error of Surface 7.
Compared to the NNMGS algorithm, TPF achieved to 70.15±
21.25% via the SVMCGS algorithm, and TPF achieved to
79.73 ± 12.53% via the RFCGS algorithm; however, FPF
reached 0.67 ± 0.48% and 0.15 ± 0.17%, respectively. DSC
was 75.15 ± 10.27% via the RFCGS algorithm. TPF achieved
to 82.12 ± 11.70% via the NNCGS algorithm, DSC achieved
to 84.54±9.53% and FPF reduced to 0.05±0.08%. As shown
Table VI, most index values of the NNCGS algorithm were
statistically different from those of the IR algorithm, the MGS
algorithm, the NNMGS algorithm, the SVMCGS algorithm
and the RFCGS algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper, a supervised method is proposed for the auto-
matic segmentation of retinal layers on SD-OCT scans of eyes
with neovascularization. After Surface 1 is detected by using
the Canny edge detection algorithm and multi-resolution graph
search algorithm, the B-scan image is aligned and flattened.
Only twenty four features are generated for the training and
testing of the NN classifier, and then seven initial surfaces are
detected for the accurate surface detection. By utilizing the
original intensities of OCT images and the layer-like shape
information, a modified graph is constructed to refine surfaces.
Surfaces between neighboring layers are successively detected
from Surfaces 2-8 based on the constrained graph search
algorithm. With the proper surface detection, neovasculariza-
tion segmentation can be segmented by using a thresholding
method. The proposed method can also cope with the OCT
images with neovascularization and fluid.

The surface detection errors were statistically significantly
smaller than errors obtained from employing the state-of-art
methods such as the IR algorithm [6] and the MGS algo-
rithm [7] because of the occurrence of neovascularization and
fluid. Meanwhile, the NNCGS algorithm also outperformed
the NNMGS algorithm. This is because the ellipsoid zone was
higher enhanced via the bright layer detection filter while the
ELM layer was restrained. Simultaneous neovascularization
and fluid segmentation were also achieved. The proposed
method also achieved higher true positive fraction and Dice
similarity coefficient, which were statistically different from
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the results obtained by the IR algorithm [6], the MGS algo-
rithm [7] and the NNMGS algorithm. As for voxel classifi-
cation of the OCT images with neovascularization and fluid,
NN classifiers outperform SVM classifiers and RF classifiers.

There are several limitations in our work. Surfaces detection
accuracy is limited in layers where the contrast between
layers is low and their boundaries are not visible due
to the occurrence of neovascularization. As can be seen
in Fig. 4(d), Fig. 6(i) and Fig. 7(i), the detected bound-
aries above neovascularization were not close to reference
boundaries, although these boundaries were tried to be refined
again after the initial boundaries were refined via the con-
strained graph search algorithm. Indeed, most inadequate
results above neovascularization are due to the disappearance
of the layers and the reference boundaries are estimated by
retinal specialists. As can be seen in Table I and Table III,
both AUSDE and ASSDE of Surface 8 were larger than the
rest of surfaces. Because of neovascularization in choroid,
the intensities under Surface 8 are much higher than usual and
the contrast between choroid and RPE is significantly reduced.
Therefore, the detected boundaries are lower than the reference
boundaries and ASSDE of Surface 8 is positive and large.
Further work can also include the segmentation of choroid
neovascularization before Surface 8 is detected. Recently,
deep neural networks have achieved great success in image
segmentation tasks. In the future, the proposed hand-crafted
features will be combined with learned deep convolutional
features to capture image context information and improve
segmentation accuracy.

Another limitation of this work is its high computing time
requirement. The algorithms were implemented in C++ and
tested on a PC with Intel i5-3450 CPU@3.10GHz and 16GB
of RAM. The average running time of the IF algorithm is
97 ± 32s for surface detection. The average running time of
the MGS algorithm was 266 ± 116s for surface detection.
The average running time of the NNMGS algorithm was
286 ± 123s for surface detection. The average running time of
the SVMCGS algorithm was 742±148s for surface detection.
The average running time of the RFCGS algorithm was
688 ± 104s for surface detection. The average running time of
the NNCGS algorithm was 398 ± 216s for surface detection.
There are two key steps for reduction of running time. First,
the bright layer possibility and the dark layer possibility were
computed serially from small scale to large scale. Second,
the max-flow/min-cut algorithm was also implemented for
the CPU process. The long processing time may be reduced
by parallelizing our method on graphic processing unit.
The average running time of neovascularization and fluid
was about 335 ± 145s. The bottom contours of Surface
7, Surface 8t and Surface 8 were estimated for each B-
scan image. The convex hull algorithm is used only in the
abnormal region and then the running time will be reduced.
In addition, neovascularization and fluid were refined by
morphological opening and closing in the whole image after
the thresholding method which takes a long time. In the future,
the abnormal region segmentation method will be used in
the local region and faster and more accurate results will be
obtained.

In the feature extraction stage, different hand-crafted fea-
tures were introduced. In our implementation, we constrained
ourselves into a neural network implementation without the
use of extensive hardware support. Nowadays deep neural net-
works achieved great success in image recognition tasks. In the
future, we will extend our work to new/different CNN architec-
tures and their optimization for OCT images. Meanwhile, with
the proper GPU supports, different successful architectures
can be designed to handle hierarchical feature extraction at
the different level of hierarchy and details. Available CNN
architectures for OCT image analysis still use 2D images or
3D small patches to regularize the extreme need of memory
issue, which puts a high-burden in computational design. Like
many other hand-craft feature extraction models [19], [20],
CNN is not at the desired level of success for capturing image
features at the varying scales [33]. This is especially true when
medical imagery is considered [34]–[37]. ResNET [34] and
DenseNET [35] were all implemented with feature integra-
tion module at different level of hierarchy in the deep nets
and the main reason is to enhance feature learning due to
loss of details, as also clearly mentioned in these seminal
works [35], [38]. Sabour et al. [33] released “CapsuleNET”
architecture to solve the problem of scale-invariance feature
learning. While CapsuleNET is a good attempt to explain
different scale features, it is also just a beginning of new era
in affine-invariance feature learning with deep nets.

Therefore, we summarize potential suggestions for the deep
net architecture for learning more effective features from OCT
images. 1) segmentation tasks should use encoder-decoder
based neural network architecture designs such as U-Net [39],
or modified DenseNET [35]. 2) Due to the requirement of
large data for supervising the deep nets, there should be
either transfer learning and fine-tuning of the network, or a
data augmentation step and properly trained network from
scratch. 3) Regularization of the network is quite an important
field for a successful image analysis framework with deep nets.
Therefore, dropout mechanisms with adaptive optimization
algorithms (such as ADAM instead of pure SGD) should be
used. 4) Network should include more average pooling than
max pooling because segmentation tasks require mixed level
of features for designing pixel level classification unlike max
pooling where larger regions are better fit for classification
purpose. 5) Skip connections, dense connections, or simi-
lar feature concatenation algorithms help to improve seg-
mentations because features from small scales can be lost.
Feature integration help to retain such properties. ResNET,
DenseNET, or CapsuleNET kind of implementations are
desirable.
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